Dodge Challenger Forum banner

1 - 9 of 9 Posts

·
Registered
Joined
·
3,881 Posts
Discussion Starter #1
Got two sleeved Iron blocks going together this week and next week.

Motor in the Hone:
440ci
4.145" Bore
4.08" Stroke
6.1 Mean Street Heads
Nasty Camshaft
All motor with big shot of n2o coming later

Motor on the floor
406ci
4.125" Bore
3.795" Stroke
6.1 Pro-Street Heads
TT Camshaft
TT Application




 

·
Premium Member
Joined
·
945 Posts
Tim should be testing his very soon, I expect to see a record Hp when he is done.
Tout
 

·
Registered
Joined
·
55 Posts
I wonder whos that first one is?
 

·
Premium Member
Joined
·
1,949 Posts
Andy I was always under the impression that sleeving was mainly used for repairing cylinder damage. In this application is the idea that the sleeve material is stronger than the cylinder walls of the block?
 

·
Registered
Joined
·
3,881 Posts
Discussion Starter #5
Darton pioneered modular sleeve designs and specialty ductile iron material beginning with our manufacture of top fuel sleeves for Keith Black Racing Engines and Milodon Engineering in 1978. This experience, our racing heritage, and our highly experienced staff of machinists and racing engine builders offered a unique set of blended talent to solve inherent block weakness design in the currently available engines where bore sizes were intended to be increased.

Many production cast iron and aluminum blocks suffer from a design weakness of cylinder stability by nature of poor support at the upper deck area. The manufacturing process of "cast in sleeves" provides for economy of scale in low horsepower engines, but does not accommodate high horsepower, high boost, or larger bore sizes.

Darton has engineered a superior solution by using a unique designed cylinder sleeve which when siamesed and nested,creates a solid deck of sleeve flanges held in tension, reinforcing the upper deck area and provides for in-field replacement with what we call Modular Integrated Deck (MID). In addition, Darton designs' manage and enhance water flow from block to head to promote stability of cooling and all sleeves are of the "Wet" design.

The enhanced water flow in and around the flange area is possible because of ported water flow control engineering we call "swirl coolant technology". This process begins with specific engineering models of respective cylinder head and combustion chamber designs and then we promote increased flow of water in those areas of the upper sleeve area subjected to the most heat. There is a different engineering model for each engine and cylinder design. While heat is generally considered to translate into energy, high resident heat in the combustion chamber can lead to detonation, the single highest cause of engine failure in the high horsepower regimes. High RPM normally translates into efficient scavenging of air-flow but during misfires or incomplete flame propagation, high cylinder pressures and temperatures are created. Our MID design compensates for this high resident heat soak condition.

In the normal dry sleeve installation the cooling medium, water, must transfer heat absorption through block material and sleeves, which may be dissimilar metals. When dry sleeves are pressed in with interference fit, the materials interface is not perfect which further exacerbates heat transfer. This thermal conductivity is inefficient and as more heat is generated, the combustion process is compromised. Even in wet sleeve designs of the past, water is never efficiently processed or flowed between the block and head to provide for maximum heat dissipation in the combustion chamber. Inherent in open or closed deck engine blocks of cast iron or aluminum is a certain amount of water stagnation. This is like pouring water through a funnel, there is really no flow or velocity until the water exits the spigot. In the case of blocks and heads, the casting ports are designed for ease of casting not efficient flow. Now with Darton's "MID", swirl coolant technology the cooling medium is ported and directed to significantly improve heat transfer where it is needed most, in the upper cylinder wall/flange area.

The Darton Pro-Sleeve Kit is available for many series of 4, 6, and 8 cylinder import and domestic engines and provides for maximum bore sizes and boost potential. The benefits of our pro-series kits are:

Improved block integral strength
Improved cooling
"Wet sleeve" replace-ability
Increased horsepower output potential
Superior oil and compression control
Street or strip application
Kits can be installed by your local machine shop
Full installation manual with every kit sale
High boost and horsepower potential · Superior cylinder sealing and ring wear
Bulletproof Darton ductile iron, 130,000 psi tensile strength
 

·
Registered
Joined
·
1,031 Posts
Actually, sleeving started in use of diesels for ease of maintenance when rebuilding. I can remember rebuilding an ol' 6-71 GMC. We'd pull the pistons, then the sleeves and replace with new ones. (now I am showing my age.....geeze). Same principal though.
 

·
Banned
Joined
·
903 Posts
So how much would the sleeve kit installed cost? This may sway my decision on going with an aluminum block to do a 440 build if it proves to be reliable and the if the cost savings are there.
 
1 - 9 of 9 Posts
Top